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Abstract

This work is focused on the analysis of the e�ects of domain switching and defects on the e�ective electroelastic
properties of polycrystalline ferroelectric ceramics. On the basis of experimental results and the classical nucleation
theory, a statistical micromechanics model is developed in order to describe the microstructural evolution of
polycrystalline ferroelectric ceramics. Further, the methods of Eshelby's equivalent inclusion and Mori±Tanaka's

mean ®eld theory are used to predict the e�ective electroelastic properties of polycrystalline ferroelectric ceramics
with aligned defects, taking the e�ects of the shapes of individual crystal and defect into consideration. Some
numerical results for BaTiO3 polycrystalline ceramics with aligned defects are carried out in order to illustrate the

e�ects of the domain switching and defects on the e�ective electroelastic properties of polycrystalline ferroelectric
ceramics. It has been shown that the simulations are in good agreement with the experimental results. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to inherent and good characteristics of piezoelectricity and pyroelectricity etc., the ferroelectric
ceramics are commonly used for design as ultra-precise displacement transducers and actuators in the
area of engineering. An increasing usage calls for more researchers to investigate in more detail the
structure and properties of ferroelectric ceramics from di�erent view points. In general, the
polycrystalline ferroelectric ceramics can be obtained by sintering the compressed powers. It is the so
called unpoling ferroelectric/piezoelectric ceramic with voids after cooled down to room temperature
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(Ansgar et al., 1996; Cao and Evans, 1993). Currently, the ferroelectric ceramics exhibit non-
piezoelectric isotropic behavior. In order to obtain more useful ceramics with piezoelectricity and
anisotropy, it is important and necessary to employ `poling' or `polarizing', that is a process of
application of a su�ciently strong electric ®eld to the ferroelectric ceramics. Why can an electrical ®eld
cause the properties variation of the ceramics? Many scientists (Chueng and Kim, 1987; Zenon, 1994)
have found the particular microscopic mapping and characteristics of the domain structures of BaTiO3

and PZT ceramics by the ways of chemical etching and X-ray respectively. It is well known that a
ferroelectric crystal can be divided into some regions called domain below Curie temperature, in which
the polarization is arranged in the same direction, and forms a spontaneous electric polarization and
strain ®eld. The interface between two adjacent domains is called a domain wall, which includes two
types: 180 and 908 domain walls. Moreover, the application of suitable external electric or mechanical
®eld can cause 180 and 908 domain switching. An electric ®eld can reorient both 180 and 908 domain,
but a mechanical ®eld only induces 908 domain switching. Domain switching is a complicated process
that includes new domain nucleation and domain wall motion so as to minimize energy of a body under
an action of external ®eld. As a result of domain switching, the e�ective polarization of the overall
individual crystal, which is de®ned as the vector sum of each domain inside the crystal without loss in
generality, is approximated to the polarizing electrical ®eld direction and then results in the e�ective
properties change of overall ceramics. Additionally, during the poling and application microcracks will
originate from the domain switching induced internal stress redistribution and act on the domain
switching, which can improve (or prevent) the domain switching as shown previously (Ja� et al., 1971;
Chueng and Kim, 1987; Zenon, 1994; Cao and Evans, 1993; Ansgar et al., 1996; Lynch et al., 1995;
Uchida and Ikeda, 1968; Poile, 1975; Furuta and Uchino, 1993; Hideaki et al., 1994; Yang and Suo,
1994; Kahn, 1985; Zhang et al., 1997). For instance, Hideaki et al. (1994) observed that the magnitude
of the electric-induced strain of PNNZT ceramics was increased by 20±40% in all samples due to the
microcrack propagation, as shown in Fig. 1. Hence, domain switching is well known to be the main
source of not only nonlinear deformation (Cao and Evans, 1993; Ansgar et al., 1996) like the butter¯y
shape but also the aging and damaging characteristics (Lynch et al., 1995; Uchida and Ikeda, 1968;
Poile, 1975; Furuta and Uchino, 1993; Hideaki et al., 1994; Yang and Suo, 1994; Kahn, 1985; Zhang et
al., 1997) of ferroelectric ceramics. Because of an increasing application of ferroelectric ceramics in the
®eld of engineering, the reliability of ferroelectric structure plays a more important role. In theory, many
papers have analyzed the e�ective moduli of linear piezoelectric ceramic without considering the e�ects

Fig. 1. The experimental results of electric induced strain changes during crack propagation (Hideaki et al., 1994).
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of the inherent microstructural changes of ferroelectric ceramics under the action of an external ®eld
(Dunn and Taya, 1993a; Wang, 1994; Marutak, 1965). Kuo and Huang (1997) and Nan and Clarke
(1996) studied the e�ective moduli of fully bonded piezoelectric ceramic, taking the e�ects of shape and
orientations of individual crystals into account. Dunn (Dunn, 1995; Dunn and Taya, 1993b) adopted
micromechanical method in order to predict e�ective moduli of unpoled polycrystalline piezoelectric
ceramics with defects. Their works have not considered the fact that the macroscopic qualities of
ferroelectric ceramics are associated with the microstructure level phenomenon, the domain switching
occurs under the in¯uence of external electric or mechanical ®eld. Recently, Chen et al. (1997) had
established a mesoscopic model to investigate the constitutive behavior of monocrystalline ferroelectrics.
Hwang et al. (1995) developed a one-dimension model to analyze the relation between domain switching
and electroelastic properties for ferroelectric/ferroelastics.

In this work, in terms of the phenomenological theoretical description of the domain switching
process, a statistical micromechanics model is proposed in order to study the e�ective electroelastic
properties of polycrystalline ferroelectric ceramics with aligned defects using the Eshelby±Mori±
Tanaka's concept.

2. Basic equations and notations

In the case of the absence of body forces and free charge, the relationships between the static elastic
and electric ®eld can be employed on the basis of the equations of elastic equilibrium and Gauss's law
of electrostatics among the strain eij, stress eij, electric ®eld Ei, elastic displacement ui, electric potential
F and electric displacement Di as presented in the following equations:

Divergence equations:

sij,j � 0

Di,i � 0 �1�
Gradient equations:

eij � 1

2
�ui,j � uj,i �

Ei � ÿf,i �2�
Constitutive equations:

sij � Cijmnemn � enijf,n

Di � eimnemn ÿ kinf,n �3�

where Cijmn is the elastic modulus (measured in constant electric ®eld), enij is the piezoelectric modulus
(measured at constant strain or electric ®eld), and kin is the dielectric modulus (measured at a constant
strain), respectively. It is clear that these material coe�cients are instantaneous constants and a�ected
by the applied external electric and mechanical ®eld.

According to the notation introduced by Barnett and Lothe (1975), we can conveniently merge the
above mentioned equations as:
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ZMn �
�
emn M � 1, 2, 3
f,n M � 4

�4�

where ZMn is derived from UM given by

UM �
�
um M � 1, 2, 3
f M � 4

�5�

Similarly the stress and the electric displacement are represented as:

Si,J �
�
sij J � 1, 2, 3
Di J � 4

�6�

Then, the electroelastic moduli can also be represented as:

EiJMn �

8>><>>:
Cijmn J,M � 1, 2, 3
enij J � 1, 2, 3; M � 4
eimn J � 4; M � 1, 2, 3
ÿkin J,M � 4

�7�

It is noted that the `inverse' of EiJMn is de®ned as FAbiJ, evidently EiJMn and FAbiJ are diagonally
symmetric for common piezoelectric ceramics.

In order to conveniently derive the equation, we can represent Eqs. (4)±(7) as 9� 1 and 9� 9 matrices
by utilizing the mapping of adjacent indices, e.g., (iJ ) = (Ji ) and (Mn ) = (nM ) for J and M 6�4:

�11�41, �22�42, �33�43, �23�44, �13�45, �12�46, �14�47, �24�48, �34�49:

Based upon the mapping, we can simplify the above expressions as matrixes in order to derive the
prediction equations more easily. Then, the constitutive equations are usually presented as:

S9�1 � E9�9Z9�1

Z9�1 � F9�9S9�1

3. The micromechanical statistics model for polycrystalline ferroelectric ceramics with aligned defects

As it is well known, one crystal is consisted of many domains below the Curie temperature. The
e�ective polarization of individual grain can be generally regarded as the vector sum of the polarization
of each domain inside it. Before being poled, the polarization of each crystal is randomly arranged so
that the overall ferroelectric ceramics exhibit isotropic and non-piezoelectric characteristics, as presented
in Fig. 2(a). But under the application of a su�ciently strong electric or mechanical ®eld, the new
domain forms or the domain wall moves, so called domain switching. As a consequence of domain
switching, the polarization of each grain will approximate the direction of the poling electric ®eld so as
to minimize the body energy, as shown in Fig. 2(b). Thus, the polarization means a distribution of the
poling electric ®eld direction. Merz (1956) observed the relationship between the microstructural
evolution and the macroscopic response through the experimental results of BaTiO3 and further
concluded that domain switching is predominantly a nucleation problem. Based on the classic phase
transformation statistical theory, the probability of the domain switching can be described (Merz, 1956)
as
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P � P0 exp

�
ÿ b

E

�
�8�

where b is the threshold constant, treated as the critical domain switching electric ®eld. P0 is the
probability of nucleation (domain switching) for in®nite ®eld strength E. For BaTiO3 ceramics, the
threshold constant b is 470 kV/m. The probability of the domain switching determined by Eq. (8) only
depends on the applied electric ®eld. Under the action of the external mechanical ®eld, we can roughly
`transfer' the applied mechanical ®eld into the relative electric ®eld through the piezoelectric constitutive
equations in order to use the Eq. (8).

Therefore, the volume fraction of the new-switched crystal will increase in some direction as the
applied external ®eld increases. If it is assumed that there are total N potential switchable domains in
volume V, the average number n of the new-switched crystal for a given electric ®eld is

n � N � P �9�
Then, the volume fraction of the new-switched grains can be obtained by:

Vf � n � v

V
� �Nv=V� � P � V 0

f � P �10�

where V 0
f is the volume fraction of all the potential switchable crystals and v is the individual crystal

volume.
Further, we depict the theoretical model of the polycrystalline ferroelectric ceramics with defects in

Fig. 3. On the basis of the Eshelby's equivalent inclusion principle, we regard the new-switched crystal
and spatially distributed defect as two phase inclusions (r = 1, 2). Then, the mean ®eld of the matrix
with electroelastic moduli Em may di�er from S0 by a disturbed ®eld S 0, caused by the presence of
inclusions, and is given by

Sm � S0 � S 0 � Em

ÿ
Z 0 � Z 0

�
�11�

Since the inclusions are now embedded in the matrix, for the ®rst phase inclusion the new switched
crystal, with electroelastic constants E1, occupies a region O1, and their local coordinate system is
consistent with the ®xed or material coordinate system as result of the domain switching. Then, we can
present the electroelastic ®eld inside the switched domain as

Fig. 2. The schematic diagrams show the unpoled (a) and poled (b) ceramics and individual domain switching under the action of

external ®eld.
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Sin � S0 � S 0 � S1 � E1

ÿ
Z 0 � Z 0 � Z 1 ÿ Z �1

� � Em

ÿ
Z 0 � Z 0 � Z 1 ÿ Z �1 ÿ Z ��1

� �12�
where Z �1 is the spontaneous eigen®eld: strain and electric ®eld. Z ��1 is the ®ctitious eigen®eld due to the
inhomogeneity.

For the second phase inclusion, we can also give the average ®eld in the defect which occupies the
region O2 by the way of Eshelby's equivalent theory in the local coordinate system:

SL
2 � S0L � S 0 L � S L

2 � 0 � Em

ÿ
Z 0L � Z 0 L � Z L

2 ÿ Z �L2
�

�13�
where the superscript L denotes the local coordinate system. For the unidirectional aligned defects, we
can assume that the ®xed coordinate system is denoted as (x1, x2, x3) shown in Fig. 3. The local
coordinate system can be established by �xL

1 , x
L
2 , x

L
3 ), where xL

3 represents the symmetric axis (i.e. ®xed
coordinate) and enables xL

1 to lie in (x1, x2) plane with no loss in generality. Then, we can obtain the
transformation matrix T from the ®xed to the local coordinate system:

Tij �
24 cos a sin a 0
ÿsin a cos b cos a cos b sin b
sin a sin b ÿsin b cos a cos b

35
then

eLij � TimTjnemn

E L
i � TinEn �14�

According to the second part introduced notations, Eq. (14) can be simply re-written by

Z L � �A�Z �15�
where the transformation matrix [A ] is explained in detail in Appendix A.

In accordance with Wang's (1992) three-dimensional solution for an ellipsoidal inclusion in a
piezoelectric material (see Appendix B), Z r, the disturbed ®eld about the two phase inclusions (r = 1,
2), can be obtained as:

Z 1 � S1

ÿ
Z �1 � Z ��1

�

Fig. 3. A theoretical model for polycrystalline ferroelectric ceramics with the penny-shape crack.
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Z L
2 � S2Z

�L
2 �16�

Then by the transformation matrix [A ]:

Z 2 � �A�ÿ1S2�A�Z �2 �17�

Substituting Eq. (16) into Eqs. (12) and (13) yields:

Z ��1 �
�
E1S1 ÿ Em�S1 ÿ I��ÿ1�Em ÿ E1 �

�
Z 0 � Z 0 � �S1 ÿ I�Z �1

� �18a�

Z �L2 � ÿ�S2 ÿ I�ÿ1
ÿ
Z 0L � Z 0 L

�
�18b�

Based on the transformation principles, we can obtain:

Z �2 � ÿ�A�ÿ1�S2 ÿ I�ÿ1�A�
ÿ
Z 0 � Z 0

�
�19�

When the ferroelectric ceramics are subjected to a far-®eld traction and electric displacement, S0
ijni, on

the boundary with the outward normal unit vector ni, in accordance with the Mori±Tanaka's mean ®eld
concept, the average ®eld of overall ceramics can be presented by

hSi � 1

V

�
DÿO1ÿO2

Sm dv� 1

V

�
O1

S1 dv� 1

V

�
O2

S2 dv � S0

� 1

V

�
DÿO1ÿO2

Em

ÿ
Z 0 � Z 0

�
dv� 1

V

�
O1

Em

ÿ
Z 0 � Z 0 � Z 1 ÿ Z �1 ÿ Z ��1

�
dv� 1

V�
O2

Em

ÿ
Z 0 � Z 0 � Z 2 ÿ Z �2

�
dv

�20�

then

0 � 1

V

�
DÿO1ÿO2

EmZ
0 dv� 1

V

�
O1

Em

ÿ
Z 0 � Z 1 ÿ Z �1 ÿ Z ��1

�
dv� 1

V

�
O2

Em

ÿ
Z 0 � Z 2 ÿ Z �2

�
dv �21�

In the case of unidirectional aligned defects, the perturbed ®eld Z 0 can be derived as:

Z 0 � ÿv1�S1 ÿ I�ÿZ �1 � Z ��1
�ÿ v2�A�ÿ1�S2 ÿ I��A�Z �2 �22�

Thus, combining Eq. (19) to Eq. (22) leads to

Z 0 � 1

1ÿ v2

h
v2Z

0 ÿ v1�S1 ÿ I�ÿZ �1 � Z ��1
�i �23�

Eq. (23) suggests that Z 0 is independent of Z �2: Substituting Eq. (23) into Eq. (18a) gives Z ��1 as
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Z ��1 �
�
E1S1 ÿ Em�S1 ÿ I� � v1

1ÿ v2
�Em ÿ E1��S1 ÿ I�

�ÿ1
�Em ÿ E1 �

�
1

1ÿ v2
Z 0

� 1ÿ v1 ÿ v2
1ÿ v2

�S1 ÿ I�Z �1
�

�24�

Therefore, it is easy to derive the expression of Z �2 in terms of Eq. (24).
Further, the overall strain and electric ®eld denoted by hZi can be obtained as the weighted average

of each phase

hZi � 1

V

� �
DÿO1ÿO2

ÿ
Z 0 � Z 0

�
dv�

�
O1

ÿ
Z 0 � Z 0 � Z 1 ÿ Z �1

�
dv�

�
O2

ÿ
Z 0 � Z 0 � Z 2

�
dv

�
� Z 0 � v1Z

��
1 � v2hZ �2i �25�

Now combining Eqs. (10), (23) and (24) to Eq. (25), we can obtain the predicting equation about the
e�ective macroscopic electroelastic behavior, taking the e�ects of domain switching and defects into
consideration as following:

hSi � E �hZi � S0 �26�
Based on the above presented model analysis, it is easy for us to analyze the relation between the
microstructural domain switching and the macro-response of polycrystalline ferroelectric ceramics in the
next section.

4. Simulation and discussion

In this section, we will use the proposed model to analyze the e�ective properties of BaTiO3 ceramics
with aligned defects. At room temperature, BaTiO3 crystal has a tetragonal phase with the particular
structure parameters, such as cell constants a = 3.992 AÊ and c = 4.035 AÊ , spontaneous polarization
Ps � 0:26 C/m2 and remnant polarization Pr � 0:08 C/m2. Then, the spontaneous eigenstrain and

Table 1

The elastic, piezoelectric and dielectric coe�cients of BaTiO3 at 258C (Ja� et al., 1971)

Single-crystal Ceramic

C E
11 (GPa) 275 166

C E
33 (GPa) 164.8 162

C E
44 (GPa) 54.3 43

C E
12 (GPa) 178.9 77

C E
13 (GPa) 151.6 78

e31 (C mÿ2) ÿ2.69 ÿ4.4
e33 (C mÿ2) 3.65 18.6

e15 (C mÿ2) 21.3 11.6

k11 (� 10ÿ9 C2 Nÿ1 mÿ2) 17.4 11.2

k33 (� 10ÿ9 C2 Nÿ1 mÿ2) 0.96 12.6

d31 (� 10ÿ12 C/N) ÿ34.5 ÿ79
d33 (� 10ÿ12 C/N) 85.6 191

d15 (� 10ÿ12 C/N) 392 270
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eigenelectric displacement of single crystal can be calculated as: e�11 � e�22 � ÿ0:005, e�33 � 0:01, D�33 �
0:26 C/m2, and others are zero. The elastic, piezoelectric and dielectric coe�cients of single-crystal and
overall ceramics of BaTiO3 are shown in Table 1.

In accordance with the material constants of BaTiO3 and the statistical micromechanics model, we
estimate the e�ects of the microstructural evolution and defects on the e�ective properties of
polycrystalline ferroelectric ceramics. Fig. 4 shows the electric-induced strain as a function of the volume
fraction v2 of defects in the case of a � b � 0: Evidently, the magnitude of the electric-induced strain
increases with the volume fraction v2 of the defects increasing, as shown in Fig. 4. In addition, the

distribution of the defects also in¯uences signi®cantly on the electric-induced strain, as shown in Fig. 5.
From Fig. 5, it is obvious that the e�ect of defects in some directions on the magnitude of the electric-

Fig. 4. The simulated strain versus the electric ®eld for BaTiO3 ceramics with aligned defects in the case of the orientation angle

a � b � 08:

Fig. 5. The calculated strain versus the electric ®eld for BaTiO3 ceramics with aligned defects in the case of the volume fraction

v2 � 0:1:

J. Cheng et al. / International Journal of Solids and Structures 37 (2000) 4763±4781 4771



induced strain is more profound than that in other directions. The simulations shown in Figs. 4 and 5
reveal that the predicted electric vs. strain curves exhibit a butter¯y non-symmetric loop about the axis
of E3 � 0 V/m. It is suggested that the magnitude of the electric-induced strain under the application of
the negative electric ®eld E3 is greater than that under the action of positive electric ®eld, and, the
increase of the magnitude possibly exceeds 20±40%, as the experimental observations from Fig. 1
(Hideaki et al., 1994).

Further, the predictions of the e�ective piezoelectric modulus d33 are presented in Figs. 6±8 as a
function of the applied external ®eld, the distribution and the volume fraction v2 of defects, respectively.
To the e�ect of the defect distribution on the piezoelectric constant, the simulations of d33 are shown in
Figs. 6±8. We can see that d33 will increase to the peak at b1608, then decrease to a minimum at b �
119:48 and gradually arrive at b � 1808 for a given external ®eld and volume fraction of defects. As
predicted, the predictions of d33 will be reduced with increasing the applied external electric ®eld or

Fig. 6. The e�ects of the external applied electric ®eld E3 and the defect orientation angle on the e�ective piezoelectric modulus d33
in the case of v2 � 0:01 and free from compressive stress.

Fig. 7. The e�ects of external stress ®eld and orientation angle of defects on the e�ective piezoelectric modulus d33 in the case of

v2 � 0:01 and electric ®eld E3 � 100 kV/m.
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compressive stress when the orientation angle b is within the regions of 0±1028 and 138.7±1808 in any
case of a � 0±1808: In contrast, d33 increases with the external electric ®eld increasing in the case of b �
102±138:78: Fig. 8 shows the variation of piezoelectric modulus with the volume fraction of defects in
constant external ®elds. Obviously, the values of d33 increase with the volume fraction v2 of the aligned
defects increasing, when the orientation angle b of defects is in the ranges of 0±1028 and 138.7±1808, but
decrease in the case of b � 102±138:78:

Similarly, the calculations of the e�ective elastic modulus S23 presented in Figs. 9±11 indicate that the
e�ective elastic modulus S23 is also greatly a�ected by the applied external ®eld and defects. From Figs.
9 and 10, we can see that the simulations of S23 also increases nonlinearly in the case of the orientation
angle b ranging within 0±1028 and 138.7±1808, but reduce in the region of b � 102±138:78, as the
external electric ®eld or compress stress increases. The in¯uence of the volume fraction v2 of defects on
the elastic modulus is depicted in Fig. 11. This suggests that the values of S23 will reduce more

Fig. 8. The e�ects of the volume fraction v2 and orientation angle of the defects on the e�ective piezoelectric modulus d33 in the

case of elec1tric ®eld E3 � 100 kV/m and free from stress.

Fig. 9. The e�ects of applied electric ®eld E3 and defect orientation on the e�ective elastic modulus S23 in the case of v2 � 0:01 and

free from stress.
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obviously in the case that b is in the ranges of 0±1028 and 138.7±1808 but rise in the case of b within
the region of 102±138.78, when the volume fraction v2 of the initial defects increases.
All the predictions shown in Figs. 6±11 reveal that the applied external ®eld and defects can induce

substantial changes in the electroelastic properties of polycrystalline ferroelectric ceramics, which are
attributed to domain switching. Since the enhancement of the applied external ®eld causes the domain
switching, the domain switching results in rearranging the internal stress around the defect and then
leads to the defects in some orientations tending to propagate but close in other orientations. Hence, the
changes of the e�ective electroelastic properties of polycrystalline ferroelectric ceramics are not

Fig. 10. The in¯uences of external applied stress and defect orientation on the e�ective elastic modulus S23 in the case of v2 � 0:01
and applied electric ®eld E3 � 100 KV/m.

Fig. 11. The e�ects of the volume fraction v2 and orientation of the defects on the e�ective elastic modulus S23 at constant electric

®eld E3 � 100 KV/m.
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consistent with the variation of the orientation angle b: Then, we can see that the defect in some
direction will improve the piezoelectric properties but reduce the elastic properties, as shown in Figs. 6±
11. On the other hand, the higher the applied external ®eld, the less distinct the e�ects of the applied
external ®eld on the e�ective electroelastic properties under a given condition. With increasing the
applied external ®eld, less and less domains can switch. Thus, the interaction between the defects and
domain switching will decline so that the e�ect shows a reductive state, which is evidently presented in
Figs. 6±11.

5. Conclusion

In terms of the phenomenological theory and the characteristics of the microstructural evolution of
the ferroelectric ceramics, a statistical micromechanics model was developed to describe the evolution
characteristics of the domain switching. Further, the ways of Eshelby±Mori±Tanaka's theory and
Wang's three-dimensional solution of an ellipsoidal inclusion embedded in a piezoelectric matrix was
adopted to predict the e�ective behavior of polycrystalline ferroelectric ceramics with aligned defects.
Based on the analysis about the BaTiO3 ceramics, it was found that the domain switching decided the
e�ective properties of polycrystalline ferroelectric ceramics under the action of applied external ®eld, and
the defects can improve the piezoelectric properties but degrade the elastic properties in some cases.
These predictions are consistent with the experimental results.
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Appendix A

The components of [A ] matrix are shown as:

ff �

26666664
nn mm 0 0 0 2nm
mmpp nnpp qq 2npq ÿ2mpq ÿ2nmpp
mmqq qqnn pp ÿ2npq 2mpq ÿ2mnqq
ÿpqmm ÿpqnn pq nppÿ nqq mqqÿmpp nmpq
nmq ÿnmq 0 mp np qmmÿ qnn
ÿnmp nmp 0 mq nq pnnÿ pmm

37777775
and

fe �
24 n m 0
ÿmp np q
mq ÿnq p

35
where n � cos a, m � sin a, p � cos b, q � sin b, `�' is a 6� 6 matrix and `fe' is a 3� 3 matrix.
Then,

A �
�
ff 06�3
03�6 fe

�
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and

AT � Aÿ1

Appendix B

Consider an in®nite piezoelectric body with the elastic moduli C 0, the piezoelectric moduli e 0 and
dielectric permitivity k 0 in which there is an inhomogeneous inclusion occupying a region O with
constants C, e and k, by introducing the following notations:

C 1
ijkl � Cijkl ÿ C 0

ijkl �B1�

e1mij � emij ÿ e0mij �B2�

k1kl � kkl ÿ k0kl �B3�
So the electroelastic constant tensors of the inhomogeneous medium can be written as:

Cijkl�x� � C 1
ijklh�x� � C 0

ijkl�x� �B4�

emij�x� � e1mijh�x� � e0mij�x� �B5�

kkl�x� � k1klh�x� � k0kl�x� �B6�
where h(x ) is the characteristic function and is de®ned by:

h�x� �
�
1 x 2 O
0 otherwise

�B7�

Substitution of Eqs. (B3)±(B5) into divergence Eq. (1) and constitutive Eq. (3) yields:

C 0
ijkluk,lj � e0mijf,mj � ÿ

h
C 1

ijkluk,lh�x�
i
,j
ÿ
h
e1mijf,mh�x�

i
,j

�B8�

e0mijui,jm ÿ k0mlf,lm � ÿ
h
e1mijui,jh�x�

i
,m
�
h
k1mlf,lh�x�

i
,m

�B9�

Based on the ®ctitious eigenstrain e�ij and eigenelectric ®eld E �i due to inhomogeneity, then Eqs. (B8) and
(B9) can be expressed as:

C 0
ijkluk,lj � e0mijf,mj �

h�
C 0

ijklu
�
k,l � e0mijf

�
,m

�
h�x�

i
,j

�B10�

e0mijui,jm ÿ k0mlf,lm �
h�

e0miju
�
i,j ÿ k0mlf

�
,l

�
h�x�

i
,m

�B11�

By introducing the Green's functions G 1, G 2, F 1, F 2 as follows:
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C 0
ijklG

1
kp,lj � e0mijF

1
p,mj � ÿdip2d�xÿ x 0 �

e0jklG
1
kp,lj ÿ k0jkF

1
p,jk � 0

C 0
ijklG

2
k,lj � e0kijF

2
,kj � 0

e0jklG
2
k,lj ÿ k0jkF

2
,jk � ÿd�xÿ x 0 � �B12�

Fourier transform of Eq. (B10) can be obtained easily and expressed in the fourth-order matrix form as:24C 0
ijklxlxj e0kijxkxj

e0jklxlxj ÿk0jkxkxj

3524G 1T
kp F 1T

p

G 2T
k F 2T

35 � � dip 0
0 1

�
�B13�

Where

G 1
kl
�xÿ x 0 � � 1

�2p�3
�
G 1T

kp �x� exp
�
ix�xÿ x 0 �

�
dx

and G 2T
k , F 1T

p and F 2T can be determined similarly.

G 1
kp,ij
�xÿ x 0 � � ÿ 1

�2p�3
�
G 1T

kp �x�xixj exp
�
ix�xÿ x 0 �

�
dx

Based on Eq. (B13), the elastic displacement um, electric potential f, strain ®eld and electric ®eld can be
obtained easily. Following the same procedure as Mura (1987) in deriving the elastic ®eld of an
anisotropic, ellipsoidal inclusion in non-piezoelectric media, basing on gradient Eq. (2), the elastic ®eld
and electric ®eld inside the piezoelectric inclusion can be obtained as following:

eIab �
1

�2p�3
h�

N1
aibj �N 1

biaj

��
C 0

ijklu
�
k,l � e0mijf

�
,m

�
�
�
N 2

abj �N 2
baj

��
e0miju

�
i,j ÿ k0mlf

�
,l

�i
�B14�

E I
a � ÿ

1

4p

h
N 2

jia

�
C 0

ijklu
�
k,l � e0mijf

�
,m

�
�N 3

ai

�
e0miju

�
i,j ÿ k0mlf

�
,l

�i
�B15�

where

N1
ijkl �

�1
ÿ1

dw3

� 2p

0

G 1T
aj �w�wkwl dy

N 2
ijk �

�1
ÿ1

dw3

� 2p

0

G 2T
i �w�wkwj dy

N3
ij �

�1
ÿ1

dw3

� 2p

0

F 1T�w�wiwj dy

If the matrix is transversely isotropic piezoelectric material, the non-zero components of N 1, N 2, N 3 can

J. Cheng et al. / International Journal of Solids and Structures 37 (2000) 4763±4781 4777



be obtained (these results had been presented in Wang (1992)). Then the Eshelby's electroelastic tensors
can be obtained.

Based on the second part formulations, Eqs. (B14) and (B15) can be simpli®ed as following:

Z I � SZ � �B16�
where

S �

26666666666664

S11 S12 S13 S14 S15 0 0 0 S19

S21 S22 S23 S24 S25 0 0 0 S29

S31 S32 S33 S34 S35 0 0 0 S39

S41 S42 S43 S44 S45 0 0 S48 0
S51 S52 S53 S54 S55 0 S57 0 0
0 0 0 0 0 S66 0 0 0
0 0 0 0 S75 0 S77 0 0
0 0 0 S84 0 0 0 S88 0
S91 S92 S93 0 0 0 0 0 S99

37777777777775
where components of matrix [S] can be obtained as follows:

S11 � 1

4p

ÿ
C 0

11N
1
1111 � C 0

12N
1
1212 � C 0

31N
1
1313 � e031N

2
113

�

S12 � 1

4p

ÿ
C 0

12N
1
1111 � C 0

22N
1
1212 � C 0

32N
1
1313 � e032N

2
113

�

S13 � 1

4p

ÿ
C 0

13N
1
1111 � C 0

23N
1
1212 � C 0

33N
1
1313 � e033N

2
113

�

S14 � 1

4p
e024N

2
113

S15 � 1

4p
e015N

2
113

S19 � ÿ 1

4p

ÿ
e031N

1
1111 � e032N

1
1212 � e033N

1
1313 ÿ k033N

2
113

�

S21 � 1

4p

ÿ
C 0

11N
1
2121 � C 0

21N
1
2222 � C 0

31N
1
2323 � e031N

2
223

�

S22 � 1

4p

ÿ
C 0

12N
1
2121 � C 0

22N
1
2222 � C 0

32N
1
2323 � e032N

2
223

�

S23 � 1

4p

ÿ
C 0

13N
1
2121 � C 0

23N
1
2222 � C 0

33N
1
2323 � e033N

2
223

�
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S24 � 1

4p
e024N

2
223

S25 � 1

4p
e015N

2
223

S29 � ÿ 1

4p

ÿ
e031N

1
2121 � e032N

1
2222 � e033N

1
2323 ÿ k033N

2
223

�

S31 � 1

4p

ÿ
C 0

11N
1
3131 � C 0

21N
1
3232 � C 0

31N
1
3333 � e031N

2
333

�

S32 � 1

4p

ÿ
C 0

12N
1
3131 � C 0

22N
1
3232 � C 0

32N
1
3333 � e032N

2
333

�

S33 � 1

4p

ÿ
C 0

13N
1
3131 � C 0

23N
1
3232 � C 0

33N
1
3333 � e033N

2
333

�

S34 � 1

4p
e024N

2
333

S35 � 1

4p
e015N

2
333

S39 � ÿ 1

4p

ÿ
e031N

1
3131 � e032N

1
3232 � e033N

1
3333 ÿ k033N

2
333

�

S41 � 1

8p
e031N

2
322

S42 � 1

8p
e032N

2
322

S43 � 1

8p
e033N

2
322

S44 � 1

4p

�
C 0

44

ÿ
N1

3232 �N 1
3322 �N1

2323 �N1
2233

�� e024
ÿ
N 2

232 �N 2
322

��

S45 � 1

4p
e015N

2
322

S48 � ÿ 1

8p

�
e024
ÿ
N1

3232 �N 1
3322 �N1

2332 �N1
2233

�ÿ k022
ÿ
N 2

232 �N 2
322

��
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S51 � 1

8p
e031N

2
311

S52 � 1

8p
e032N

2
311

S53 � 1

8p
e033N

2
311

S54 � 1

4p
e024N

2
311

S55 � 1

4p

�
C 0

55

ÿ
N1

1133 �N 1
1313 �N1

3113 �N1
3311

�� e015
ÿ
N 2

311 �N 2
131

��

S57 � ÿ 1

8p

�
e015
ÿ
N1

1133 �N 1
1331 �N1

3113 �N1
3311

�ÿ k011
ÿ
N 2

311 �N 2
131

��

S66 � 1

4p
C 0

66

ÿ
N1

1122 �N 1
1221 �N1

2112 �N 1
2211

�

S75 � ÿ 1

2p

�
C 0

13

ÿ
N 2

311 �N 2
131

�� e015N
3
11

�

S77 � 1

4p

�
e015
ÿ
N 2

311 �N 2
131

�ÿ k011N
3
11

�

S84 � ÿ 1

2p

�
C 0

44

ÿ
N 2

322 �N 2
232

�� e024N
3
22

�

S88 � 1

4p

�
e024
ÿ
N 2

322 �N 2
232

�ÿ k022N
3
22

�

S91 � ÿ 1

4p

ÿ
C 0

11N
2
113 � C 0

12N
2
223 � C 0

31N
2
333 � e031N

3
33

�

S92 � ÿ 1

4p

ÿ
C 0

12N
2
113 � C 0

22N
2
223 � C 0

32N
2
333 � e032N

3
33

�

S93 � ÿ 1

4p

ÿ
C 0

13N
2
113 � C 0

23N
2
223 � C 0

33N
2
333 � e033N

3
33

�

S99 � 1

4p

ÿ
e031N

2
113 � e032N

2
223 � e033N

2
333 ÿ k033N

3
33

�
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